Programming
Unit 4. Control flow

UNIT 4. CONTROL FLOW

Programming
Year 2017-2018
Grade in Industrial Technology Engineering

Paula de Toledo.
David Griol

&  Universidad

¥ Carlos ITT de Madrid

o W 2
Rg®  WWwuc3mes



Unit 4. Control flow

Contents

1. Introduction
2. Conditional control flow structures

1. ifelse
2. switch

3. Iterative control flow structures (loops)

1. while
2. do while
3. For

4. Control structure nesting




Unit 4. Control flow Control flow

Control flow structures

* Alter the standard flow of program execution

 Standard = Starting from the first instruction of the main method,
sequential order

* Control flow instructions break up this sequence
* Conditional control flow structures

Decision-making instructions

Blocks of instructions are executed depending on the result of a
boolean expression (the condition)

* Repetitive (Iterative) control flow structures (AKA Loops)
Blocks of instructions are repeated while a condition holds




4.1. Introduccion

Every possible algorithm can be implemented using only
these three control flow structures

Conditional iterative
if-else, switch for, while, do-while

Sequential

Instruction

block y
Logical Instruction

expression block

A

Instruction True Logical
ogica
block Instruction Instruction exprgession
block block




Unit 4. Control flow Structured programming

Structured programming

* Programing paradigm
 Best practice for developing good programs
Good = easy to develop and to maintain (correct, upgrade)

* Basic principles of structured programming
* Single entry and exit end point (start /end)

* Only secuential, conditional and interative control flow structures
allowed

* Never use “go to” instructions!




2. CONDITIONAL INSTRUCTIONS
2.1 IF-ELSE




Unit 4. Control flow 2.1 If-else

Conditional structure 1£f - else

* Logic expression is evaluated
* If the expression is true block of code 1 is run
* If the expression is false block of code 2 is run
 After either branch has been executed, control returns to the point after the if

Flow diagram
Syntax &
1f (Logical expression) {
instruction block 1; True
) N - Logical expression
else {
instruction block 2; Instruction Instruction

} block 1 block 2
Example

if (a > b){
printf ("A greater than B");
} else {
printf ("A smaller than or equal




Unit 4. Control flow 2.1 If-else

Conditional structure 1 £

» Simplest version
* If the expression is true the block is run
« Ifitis not, nothing happens

Syntax Flow diagram

if (Logical expression) {

instruction block; True _ ,
} - Logical expression

Example Instruction
block

if (age < 18) {
printf ("KID") ;
ticket discount




Unit 4. Control flow 2.1 If-else

Nested if structures

* To define diferent alternative and mutually exclusive paths
- If all logical expressions are false the last block is run

1f (logical expression 1) {

: : : True .
instruction block 1; Logical Instruction
} B N expressior Block 1

else(

lf(}oglcal_gxpre851on_2){ Logical True Instruction
instruction block 2; XDrESSION Block 2
}

else {

instruction block 3; Instruction
N N Block 3




Unit 4. Control flow 2.1 If-else

Exercise

* Develop a program that queries the user for the mark in one
exam and displays the corresponding grade

* Sobresaliente: 9 to 10
Notable: 7to 9
Bien: 5 to 7
Insuficiente: less than 5
Error -the mark is not between 0 and 10




Unit 4. Control flow 2.1 If-else

Example

{

#include <stdio.h>
int main (void)

int mark; //student's mark — numeric value

printf ("Insert mark: (0-10) \n");
scanf ("%1", é&mark);

if ( (mark >= 0) && (mark < 5) ){
printf ("Failed\n"Y);
}
else{
if ( (mark >= 5) && ( mark <= 10 )){
printf ("Passed \n%);
}
else({
printf ("mark value not valid");
printf ("valid range is 0-10\n");

}
system ("PAUSE") ;

return 0O;

:}-Opﬂon].

— Option 2

_ Default
option




Programming
Unit 4. Control flow

2. CONDITIONAL INSTRUCTIONS
2.2. SWITCH




Unit 4. Control flow 2.2 Switch

switch

- Simplifies multiple selection structures based on a selector
variable

o e Flow diagram
Syntax variable l

switch (selector) {
' . selector

casg constant expression 1: Possiblo
instruction block 1; selector
break : o o values

case constant expression 2:
instruction block 2;
break;

case constant expression N: ; : .
st fion block N: Instruction Instruction Instruction
thstruction block N block 1 block 2 block n

<
)l

default: {%

default instruction block;




Unit 4. Control flow 2.2 Switch

Example: Tell the polygon name according to the number of sides

#include <stdio.h>

int main (void)

{

int numSides;
printf ("Insert number of sides: ");
scanf ("%1", & numSides) :;
switch (numSides){ //numSides i1s the selector for the switch
case O: case 1: case 2:
printf ("not a polygon \n");
break;
case 3:
printf ("triangle\n");
break;
case 4:
printf ("rectangle\n");
break;
case O:
printf ("pentagon\n") ;
}
system ("PAUSE") ;

return 0O;




Unit 4. Control flow 2.2 Switch

switch

* selector:

* Must be a variable or expression of any of the following datatypes:
integer, logical, char
Can’t be a real number (float, double)
Avoid using a logical expression, in that case “if” is a better option

¢ case

* Each “case” clause is followed by a constant expression of the
same datatype as the selector
Examples 12, MAXIMUM, MAXIMUM+5
 Value ranges cant be set, a new case clause needed for each value
Example case 1: case 2: case 3: case 4
Restriction in C, this is possible in most languages

* default:

* If the selector value doesn’t match the value of any of the case
clauses, the default block will be run (if existing)




Unit 4. Control flow 2.2 Switch

Example: Tell if the letter entered is a vowel

int main (void) {

char c;
printft
scanf ("sc"
switch (c¢) {
case 'A':
printf
break;
case 'E':
printf
break;
case
printf
break;
case '0O':
printf
break;
case
printf
break;

printf
}

return 0O;

("Enter a letter

'Il:

'Ul:

2 g
&c) ;

case 'a':
("vowel A\n");

case 'e':
(" vowel E\n");

case 'i':
(" vowel I\n");

case 'o':
(" vowel O\n");

case 'u':
(" vowel U\n");

default: //Default block — run if no previous match

("consonant\n") ;

system ("PAUSE") ;




Unit 4. Control flow 2.2 Switch

Switch: break instruction

* Usually we want all the case blocks in a switch to be mutually
exclusive

* To get this behaviour we end each case block with a break
instruction

* If the break instruction is missign, all the following case blocks

from that point on will be run (fall through behaviour) switch a
until a break instruction, is found

* When a break instruction is found, the switch is terminated




Unit 4. Control flow 2.2 Switch

Switch with no break, example

* Occasionally we may want to write some code that falls thouh the
different options of the switch

- Example: Madrid anti-pollution protocol: three different scenarios (1-2-3)
according to severity, increasing traffic restrictions

int scenario;
printf ("Enter the scenario ");

WO

scanf (“%1”, &scenario) ;

switch (scenario) {
case 3:
printf ("Half of cars banned, according to plate number");
case 2:
printf ("On-street parking banned for cars with no resident permit");
case 1:
printf ("Maximum speed in M30 70Kmh");
break;
case default:
printf ("No traffic restriction ");




Programming
Unit 4. Control flow

3. ITERATIVE STRUCTURES - LOOPS




Unit 4. Control flow

[terative control flow structures

* Other names: repetitive structures, loops

* Three options in C
° for

The instruction block is repeated a given number of times, that is
known beforehand (when the loop starts)

* Example:
* Display all numbers from 1 to 100.
- while and do-while
The instruction block is repeated while a given condition holds

Used when the number of iterations is not known a priori (for
example depends on the user inputs)

Example:

* Read pin number until pin is correct




Unit 4. Control flow

For control flow structure

Syntax

for (initialization; control expression; update)
instruction block;

}
Initialization Flow diagram initialization

An initial value is assigned to the
de control variable

Control
Control expression: expression

Boolean (logical) expression that is
checked before each loop iteration Instructions
and determines if the block is run block

once more or not

update

Update

Update of the control variable
performed after each loop iteration




Unit 4. Control flow

For control flow structure

* Repeats an instruction block a given number of times

* For loops comprise
* An initialization instruction
Executed before the first iteracion (only)
* An update instruction

Updates the value of the control variable, executed after every
iteration

A control expression, that is evaluated after the update

* If the control expresion is true the block of instructions is
executed again




Unit 4. Control flow

For Examplel

* Program displaying all integer numbers from 1to 5

#include <stdio.h>

int main(void) {

int 1i;

for (i=1; i<=5; i++) {
printf ("$i\n", 1i);
}

True
return 0O;

printf ("%i\n", 1i);




Unit 4. Control flow

For: Program to add all integers from 1 to 10

initialization Control expression

#includel <stdio.h>

int main (void)
{

int i;

int sum=0;

for (i=1; i<=10; i++) {
sum=sum+i;
printf ("i variable's value now is %i \n", 1i);
printf ("sum value is now %i \n", sum);
}
printf ("The final value of i is %i \n", 1i);
printf (" The final value of sum is %i\n ", sum);

system ("PAUSE") ;
return 0;




Programming ; Universidad
g Carlos Il de Madrid

Un|t 4, ContrOI ﬂOW www.uc3mes




Unit 4. Control flow 3.2. While

while control structure

Syntax Flow diagram

while (logical expresion)

instruction block; Logical

expression

Instruction block




Unit 4. Control flow 3.2. While

while control structure

* Repeats a block of instruction while the logical expression
(condition) is true

* The logical expression is evaluated before starting to run the
instruction block
* Therefore the number of repetitions can be 0.

* After each execution of the instruction block the condition is re-
evaluated.

* If the condition is still true, the instruction block is repeated.
* If the condition is now false, the loop terminates.

 We should check that the condition will be false under some
situations

* ... otherwise the loop will run forever (infinite loop)




PROGRAM TO ADD ALL INTEGERS FROM 1 TO0 10
IS WHILE THE BEST OPTION?

PROGRAM TO ADD ALL NUMBERS ENTERED BY THE USER UNTIL
USER ENTERS A 0




Unit 4. Control flow

Example: random number generator

#include <stdio.h>
#include <stdlib.h>

int main (void)
{
int num;
int answer;

printf ("Do you want to generate random numbers (1->YES 0->NO)");
scanf ("%d", &answer);

//The loop will only run if answer 1is 1
while (answer==1) {
num=rand () $1024;
printf ("%d \n", num);

printf ("Do you want to generate more random numbers (1->YES 0->NO)? ")|;

scanf ("%d", & answer);

printf ("You entered %d. No more random numbers will be generated\n",
system ("PAUSE") ;

return O;

answ




Unit 4. Control flow 3.2. While

Exercises: Guess secret number

* For Beginners

* Secret number is setin the code as a constant

 Hints: "bigger than", "smaller than"
* Advanced user
* Limited number of attempts

* Expert user
* A second number is a "bomb" - if you hit the bomb game is over




Programming Py Universidad
Carlos Il de Madrid

Un|t 4, ContrOI ﬂOW Qg  Wwwuc3mes

3.3. DO-WHILE




Unit 4. Control flow 3.3. Do - while

Do — while controlstructure

* The instruction block is executed at least once

Flow diagram

Sintaxis

do { | Instruction
block

instruction block;

} while (logical expression); Logical

expression




Unit 4. Control flow 3.3. Do - while

Do — while controlstructure

* As in while, the instruction block is executed while a condition
or logical expression is true

 Only difference: the logical expression is evaluated after the
instruction block is executed.

* Minimum number of repetitions is one.

» After executing the instruction block the expression is
evaluated again.
» If the condition is still true, the instruction block is repeated.
* If the condition is now false, the loop terminates

 Similarly to while, an infinite loop can be generated




Unit 4. Control flow 3.3. Do - while

do-while example

* Display menu, read option, until exit (0).

int main (void)

{

int option; // no need to initialize option here

do{
printf ("Select one option\n");
printf : Add numbers\n") ;
printf : Subtract numbers\n") ;
printf : Multiply numbers\n");
printf

// —--- code for operations here ----

scanf ("%d", &option);
} while (option!=0); // the loop will stop only when option is O

printf ("You selected exit\n");
system ("PAUSE") ;
return O;




Unit 4. Control flow 3.3. Do - while

Program that prompts for a password until correct

#include <stdio.h>
#tdefine CORRECT_PAS SWORD 1234

int main(void)
{

int password;

do {
printf ("Enter your password: ");
scanf ("%1", &password);

}while (password!= CORRECT PASSWORD) ;
printf ("Welcome!\n");

system ("PAUSE") ;
return O;




Unit 4. Control flow

Password + Limited number of attempts
#define CORRECT PASSWORD 1234

Complex condition
int main (void) { The block is executed while the
int password; PASSWORD is not correct AND the

;21{: attempts = 0; number of attempts is smaller than 3

printf ("Enter your password: ");
scanf ("%1", &password);
attempts = attempts +1;
}while ((password!= CORRECT PASSWORD) && (attempts<3));

if (password== CORRECT PASSWORD) {
printf ("Welcome!\n");
telse {
// 1f password wrong we necessarily have exceeded
// the number of attempts
printf ("Sorry, only 3 attempts are allowed"):
printf (", access denied\n");

J Post-check
return O: The while loop may end because the password is found or
} because the attempts limit is reached.

We need to test after the loop which of the exit conditions
holds




Unit 4. Control flow 3.3. Do - while

Integers from 50 to 1 or user exit

* Programa that prints to the screen integer number from 50 to 1 in
decreasing number . Stops when 1 is reached or when the user selects to

exit (user is prompted after each number if he/she wants to exit)

int main (void)
{
int x = 50; // x stores the integer value to display
int continue;// continue stores user answer to continue prompt
do{
printf ("$i \n", x); // display x
//decrease x value
x--; //an alternative way of writing x = x — 1;
printf ("Do you want to display the next number (YES->1; NO->0)°?
scanf ("%1", & continue):;
} while ((x>0) && (continue ==1));

system ("PAUSE") ;
return O;




Programming
Unit 4. Control flow

CONTROL STRUCTURE NESTING




Unit 4. Control flow

Control structure nesting

* nesting: enclosing control structures one into another

* The instruction block of any structure can contain other
structures




Unit 4. Control flow

int main(void) {
int continue;
e Program that prompts the int n;

user to enter a number

and outputs the weekday
. printf("\n Enter an integer number [1..7]:
corresponding to the scanf ("$i", &n);

number —switch (n) {
. . . case 1: printf (" Monday\n "); break;
This will be repeated until case 2: printf(" Tuesday\n "); break;
the user decides to exit case 3: printf (" Wednesday\n "); break;
case 4: printf (" Thursday\n "); break;
case 5: printf (" Friday\n "); break;
case 6: printf (" Saturday\n "); break;
case 7: printf (" Sunday\n "); break;

switch default: printf (" Wrong number\n") ;

structure L)
nested inside a printf (" Do you want to continue? 1/0: ");

j scanf ("%1", & continue);
do-while —} while (cont1nue==1) :
loop.

e Days of the week

—do {

system ("PAUSE") ;

N__— | return 0;




Haga clic para modificar el estilo de texto del patron

Write a Program that prompts the user to enter a number and outputs all

integers from 1 to that number. Repeat until user wants to exit, this will
be specified by enteringa 1

int main (void) {
int num, 1i;

int salir;

— do {//Se repite hasta que el usuario inserte 1

forloop printf ("Introduzca un numero");

nested in a scanf ("%d", &num) ;

do-while printf ("Los numeros del 1 al %d son: "
loop for (i=1; i<=num; i++) {

[: printf ("sd, ", 1);
\/
}

printf ("\nDesea salir? (l-si, O-no) ");
scanf ("sd", &salir);
) while (salir!=1);

, num) ;

system ("PAUSE") ;
return O;




Unit 4. Control flow

C programming - summary

e Structure of a C program

#include <stdio.h>
int main (void)

{

variable declaration instructions...
executable instructions
return 0O;

}
e Assignment operator

e Variable declaration

datatype variable name
const datatype constant name = value;
e [nput and output (for integers)

scanf ("%1", &variable) ;

printf ("$1", wvariable);




Unit 4. Control flow

Conditional control structures

if (logical expression 1) { switch (selector) {

case value 1:
instruction block 1;

} break;

case value 2:
instruction block 2;

instruction block 1;

else {

if (logical expression 2) { break;
B} - case value n:
instruction block n;
} break;
default:
instruction block;

instruction block 2;

else {

logical expression 3;




Unit 4. Control flow

[terative control structures (loops)

for (initialization; logical expression; update) ({

instruction block

while (logical expression) {

instruction block
instruction block

} while (logical expression);

~

0 or more times At least once




Programming
Unit 4. Control flow

TEMA 4.
ESTRUCTURAS DE CONTROL

<% Universidad
§ Carlos III de Madrid

o -,
Rg®  WWwuc3mes




